Year: Author:

Bendezú, Alvaro; Mego, Marianela; Monclús, Eva; Merino, Xavier; Accarino, Ana; Malagelada, Juan Ramón; Navazo, Isabel; Azpiroz, Fernando
Neurogastroenterology and Motility, Vol. 29, Num. 2, 2017.
Background: The metabolic activity of colonic microbiota is influenced by diet; however, the relationship between metabolism and colonic content is not known. Our aim was to determine the effect of meals, defecation, and diet on colonic content. Methods: In 10 healthy subjects, two abdominal MRI scans were acquired during fasting, 1 week apart, and after 3 days on low- and high-residue diets, respectively. With each diet, daily fecal output and the number of daytime anal gas evacuations were measured. On the first study day, a second scan was acquired 4 hours after a test meal (n=6) or after 4 hours with nil ingestion (n=4). On the second study day, a scan was also acquired after a spontaneous bowel movement. Results: On the low-residue diet, daily fecal volume averaged 145 ± 15 mL; subjects passed 10.6 ± 1.6 daytime anal gas evacuations and, by the third day, non-gaseous colonic content was 479 ± 36 mL. The high-residue diet increased the three parameters to 16.5 ± 2.9 anal gas evacuations, 223 ± 19 mL fecal output, and 616 ± 55 mL non-gaseous colonic content (P<.05 vs low-residue diet for all). On the low-residue diet, non-gaseous content in the right colon had increased by 41 ± 11 mL, 4 hours after the test meal, whereas no significant change was observed after 4-hour fast (-15 ± 8 mL; P=.006 vs fed). Defecation significantly reduced the non-gaseous content in distal colonic segments. Conclusion & inferences: Colonic content exhibits physiologic variations with an approximate 1/3 daily turnover produced by meals and defecation, superimposed over diet-related day-to-day variations.
Virtual Reality to teach anatomy
Fairén, Marta; Farrés, Mariona; Moyés, Jordi; Insa, Esther
Proceedings in Eurographics Education Papers, 2017.
Virtual Reality (VR) and Augmented Reality (AR) have been gradually introduced in the curriculum of schools given the benefits they bring to classical education. We present an experiment designed to expose students to a VR session where they can directly inspect 3D models of several human organs by using Virtual Reality systems. Our systems allow the students to see the models directly visualized in 3D and to interact with them as if they were real. The experiment has involved 254 students of a Nursing Degree, enrolled in the Human anatomy and physiology course during 2 years (2 consecutive courses). It includes 10 3D models representing different anatomical structures which have been enhanced with meta-data to help the students understand the structure. In order to evaluate the students’ satisfaction facing such a new teaching methodology, the students were asked to fill in a questionnaire with two categories. The first one measured whether or not, the teaching session using VR facilitates the understanding of the structures. The second one measured the student’s satisfaction with this VR session. From the results we can see that the items most valuated are the use of the activity as a learning tool, and the satisfaction of the students’ expectations. We can therefore conclude that VR session for teaching is a powerful learning tool that helps to understand the anatomical structures.