Inverse lighting design for interior buildings integrating natural and artificial sources

Eduardo Fernandez; Besuevsky, Gonzalo

In this paper we propose a new method for solving inverse lighting design problems that can include diverse sources as roof skylights or artificial light sources. Given a user specification of illumination requirements, our approach provides optimal light sources positions as well as optimal shapes for skylight installations in interior architectural models. The well known huge computational effort that involves searching for an optimal solution is tackled combining two concepts: exploiting the scene coherence to compute global illumination and using a metaheuristic technique for optimization. Results and analysis show that our methodology presents fast and accurate results and that it can be applied for lighting design in indoor environments with interactive global illumination visualization support.

http://dx.doi.org/10.1016/j.cag.2012.09.003