Higher-Order Voronoi Diagrams on Triangulated Surfaces

Fort, Marta; Sellares, J. Antoni; Cabello, Sergio

We study the complexity of higher-order Voronoi diagrams on triangulated surfaces under the geodesic distance, when the sites may be polygonal domains of constant complexity. More precisely, we show that on a surface defined by n triangles the sum of the combinatorial complexities of the order-j Voronoi diagrams of m sites, for $j=1,\ldots,k$, is $O(k^2n^2 k^2 m^k n^m)$, which is asymptotically tight in the worst case.

http://dx.doi.org/10.1016/j.ipl.2009.01.001