Good-visibility maps visualization

Coll, Narcis

Given a set V of viewpoints and a set S of obstacles in an environmental space, the good-visibility depth of a point q in relation to V and S is a measure of how deep or central q is with respect to the points in V that see q while minding the obstacles of S. The good-visibility map determined by V and S is the subdivision of the environmental space in good-visibility regions where all points have the same fixed good-visibility depth. In this paper we present algorithms for computing and efficiently visualizing, using graphics hardware capabilities, good-visibility maps in the plane as well as on triangulated terrains, where the obstacles are the terrain faces. Finally, we present experimental results obtained with the implementation of our algorithms.

http://dx.doi.org/10.1007/s00371-009-0380-y