Given a set \(V \) of viewpoints and a set \(S \) of obstacles in an environmental space, the good-visibility depth of a point \(q \) in relation to \(V \) and \(S \) is a measure of how deep or central \(q \) is with respect to the points in \(V \) that see \(q \) while minding the obstacles of \(S \). The good-visibility map determined by \(V \) and \(S \) is the subdivision of the environmental space in good-visibility regions where all points have the same fixed good-visibility depth. In this paper we present algorithms for computing and efficiently visualizing, using graphics hardware capabilities, good-visibility maps in the plane as well as on triangulated terrains, where the obstacles are the terrain faces. Finally, we present experimental results obtained with the implementation of our algorithms.