Adaptive simplification of huge sets of terrain grid data for geosciences applications

Coll, Narcis

We propose and discuss a new Lepp-surface method able to produce a small triangular approximation of huge sets of terrain grid data by using a two-goal strategy that assures both small approximation error and well-shaped 3D triangles. This is a refinement method which starts with a coarse initial triangulation of the input data, and incrementally selects and adds data points into the mesh as follows: for the edge e having the highest error in the mesh, one or two points close to (one or two) terminal edges associated with e are inserted in the mesh. The edge error is computed by adding the triangle approximation errors of the two triangles that share e, while each L(2)-norm triangle error is computed by using a curvature tensor (a good approximation of the surface) at a representative point associated with both triangles. The method produces triangular approximations that capture well the relevant features of the terrain surface by naturally producing well-shaped triangles. We compare our method with a pure L(2)-norm optimization method.

http://dx.doi.org/10.1016/j.cam.2011.09.005