Let \(P \) and \(F \) be sets of \(n \geq 2 \) and \(m \geq 2 \) points in a plane, respectively. We study the problem of finding the minimum angle \(\alpha \in [2\pi/m, 2\pi] \) such that one can install at each point of \(F \) a stationary rotating floodlight with illumination angle \(\theta \), initially oriented in a suitable direction, in such a way that, at all times, every target point of \(P \) is illuminated by at least one floodlight. All floodlights rotate clockwise at unit speed. We provide bounds for the case in which the elements of \(P \cup F \) are on a given line, and present exact results for the case in the plane in which we have two floodlights and many target points. We further consider the non-rotating version of the problem and look for the minimum angle \(\theta \) such that one can install a non-rotating floodlight with illumination angle \(\theta \) at each point of \(F \), in such a way that every target point of \(P \) is illuminated by at least one floodlight. We show that this problem is NP-hard and hard to approximate.